iPODS 2016:

What does (/do variations in) the CCD 'mean'?

University of California, Riverside University of Bristol, Bristol, Europe⁺

East/West CCD basin asymmetry during the LGM?

East/West CCD basin asymmetry during the LGM?

East/West CCD basin asymmetry during the LGM?

What is the lysocline?

What is the lysocline?

"The lysocline is the depth in the ocean below which the rate of dissolution of calcite increases dramatically." [Wikipedia]

'a dissolving or loosening' of [carbonate content that] 'possesses or exhibits gradient' [from the Greek: 'lyso' and 'cline']

Where is the saturation horizon?

Where is the saturation horizon?

Characterizing the marine-pelagic carbonate sink

Characterizing the marine-pelagic carbonate sink

CCD variability (or not) in shallow-time

Farrell and Prell [1989]

CCD variability (or not) in deep-time

✓ ~9 Ma interval of pronounced (~4°C) and progressive warming of the Earth's surface.

(We want to test the link between warming, increased weathering, CO2 draw-down, and Earth system regulation.)

10

20

50

60

40

30

Age (Ma)

6. Attentic N. Attentic N. Attentic C./E. Indian

✓ Increasing atmospheric pCO_2 .

Three data slices spanning LPEE interval (and avoiding PETM).

Site distribution (and existing crust older than 55 Ma).

55 60 70 80 90 100 110 120 130 140 150 160 170 180

Crustal age (Ma)

Greene et al. [in revision]

8. Adamile Allontic Indian Pacific C./E.Indian

'CCD' plots.

8. Alteritic N. Altantic N. Altantic C./E.Indian

'CCD' plots.

Contours are of relative data density within a sliding time-window (and wt% bin). Red contour delineates 50% of the data.

Farrell and Prell [1989]

'Conclusions'

Credits

Sarah Greene, Daniela Schmidt [Bristol] Sandy Kirtland Turner [UCR] Ellen Thomas [Yale] Heiko Pälike [Bremen]

The Royal Society Natural Environmental Research Council

European Research Council

Established by the European Commission

