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1. Introduction

[1] A doubling of present atmospheric CO2 concentra-
tions (to 760 ppm) may occur by the end of this century in
the absence of efforts to diminish CO2 emissions from
fossil-fuel combustion [Intergovernmental Panel on Climate
Change (IPCC), 2001]. Based on inappropriate assumptions
and erroneous thermodynamic calculations, Loáiciga [2006]
mistakenly reports that atmospheric CO2 concentrations of
760 ppm will lower the pH of the surface ocean by 0.28
relative to the natural ‘‘mid 18th century’’ conditions. He
implies that a drop of this magnitude will have minimal
biological impact, neglecting numerous recent experiments
and observations showing that this decrease in pH would
substantially affect the physiology and health of marine
organisms. Here, we focus on two fundamental flaws in the
published analysis that invalidate his conclusions: (1) he
assumes instantaneous chemical equilibration of the ocean
with carbonate minerals although this process is known to
take five to ten thousand years and (2) contrary to what is

implied by Loáiciga, many marine organisms are sensitive
to a pH decrease of 0.2 units.

2. Equilibration of Calcite With CO2 in Seawater

[2] The calculations of Loáiciga [2006] assume that
chemical equilibration with calcite will occur instanta-
neously in response to an increase in atmospheric CO2,
resulting in an increase in alkalinity and a significant
buffering of seawater pH. The carbonate system in sea-
water does react with calcium carbonate minerals, but the
rate of reaction is limited both kinetically and physically.
The behavior of open ocean surface waters differs from
that of ground waters in contact with carbonate rocks
[Stumm and Morgan, 1996]. Ocean surface waters are
not in contact with enough carbonate mineral to allow
local equilibration; thus equilibration of the ocean with
carbonate minerals involves various transport processes
and takes five to ten thousand years [Sundquist, 1985;
Archer et al., 1998; Archer, 2005; Caldeira and Wickett,
2003]. Reaction of anthropogenic CO2 with carbonate
minerals will ultimately cause the average ocean alkalinity
to increase; however, observations to date show little or
no change in ocean alkalinity [Andersson et al., 2003;
González-Dávila et al., 2003; Feely et al., 2004].
[3] Changes in seawater pH (Table 1) calculated using

widely-used CO2-system software [Lewis and Wallace,
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1998], with the assumption of constant alkalinity [Dickson,
1981] appropriate for estimating century-scale changes in
ocean chemistry, are substantially larger than those reported
by Loáiciga [2006] (for example, see González-Dávila et
al. [2003]). There is a further significant problem with
Loáiciga’s calculations; his equation 7 is not appropriate to
seawater. As written, it implies that the concentration of
alkalinity is twice that of calcium, whereas in the real ocean
the concentration of alkalinity is far less than that of
calcium [Stumm and Morgan, 1996].
[4] Century-scale CO2 increases cause carbonate-ion con-

centrations ([CO3
2�]) to decline and carbonate-mineral satu-

ration states to diminish. The change from preindustrial
(280 ppm) to present-day (380 ppm) conditions has already
nearly halved the degree of aragonite supersaturation in cold
surface ocean waters (Table 1). An increase to 760 ppm
would cause aragonite minerals to dissolve in cold ocean
waters (aragonite saturation <1; Table 1) [Caldeira and
Wickett, 2005; Orr et al., 2005]. This is in stark contrast to
Loáiciga’s model which requires a constant equilibrium with
calcite and hence a significant undersaturation with respect
to aragonite, even in the pre-industrial ocean.

3. Sensitivity of Marine Organisms to pH Change

[5] The U.S. Environmental Protection Agency [1976]
Quality Criteria for Water state: ‘‘For open ocean waters
where the depth is substantially greater than the euphotic
zone, the pH should not be changed more than 0.2 units
outside the range of naturally occurring variation . . .’’
Atmospheric CO2 concentrations would need to be stabi-
lized at <500 ppm for the ocean pH decrease to remain
within the 0.2 limit set forth by the U.S. Environmental
Protection Agency [1976] (Table 1).
[6] The assumption made by the U.S. Environmental

Protection Agency [1976] that a pH decrease of 0.2 units
in the ocean will not harm marine biota is fundamental to the
conclusions made by Loáiciga [2006]. However, this crite-
rion was established prior to the development of an extensive
body of research showing that a decrease of this magnitude
would pose a risk to the physiology and health of a variety of
marine organisms (much of this research is reviewed by
Gattuso et al. [1999], Kleypas et al. [1999], Seibel and
Fabry [2003], Pörtner et al. [2004], and Caldeira et al.
[2005]). The best-studied effect of CO2-driven pH changes
in seawater is the reduction in calcification rates of several
major groups of organisms that secrete calcium carbonate
shells and skeletons (e.g., corals and coccolithophores). For
example, studies in general show that calcium carbonate

minerals are produced by corals at rates approximately
proportional to the degree of aragonite supersaturation.
Average decreases in coral reef calcification of about 30%
to 60% have been reported for a doubling of CO2 over pre-
industrial concentrations, raising concern that calcification
rates in coral reefs may fall behind rates of erosion and
dissolution. Predicted decreases in calcite and aragonite
saturation in both cold and warm waters risk important
adverse impacts on food webs and key biogeochemical
processes throughout the water column [Orr et al., 2005].
There is also a substantial and growing body of evidence that
the projected changes in oceanic pH and dissolved CO2 will
have direct physiological effects [Seibel and Fabry, 2003;
Barry et al., 2005].

4. Conclusions

[7] Currently, about one-third of the CO2 released to the
atmosphere from the burning of coal, oil, and gas (and land
cover change) is absorbed by the surface ocean [IPCC, 2001;
Sabine et al., 2004]. This CO2 drives well known changes in
the aqueous carbonate system that result in decreases of both
ocean pH and carbonate-ion concentrations [Stumm and
Morgan, 1996; Zeebe and Wolf-Gladrow, 2001]. A body of
literature describes observed and modeled penetration of
CO2 into the ocean and its impact on ocean chemistry [e.g.,
Caldeira and Wickett, 2003; Feely et al., 2004; Sabine et al.,
2004; Caldeira and Wickett, 2005; Orr et al., 2005]. An
additional body of literature shows that changes in ocean
chemistry within the ranges predicted for the next decades
and centuries present significant risks to marine biota,
especially those that make their shells or skeletons from
carbonate minerals (see references in Gattuso et al. [1999],
Kleypas et al. [1999], Seibel and Fabry [2003], and Pörtner
et al. [2004]). The effects of increasing atmospheric CO2

concentrations on the carbonate system in seawater are not
reversible on human time scales, and thousands of years will
be required before the system can ‘‘recover’’ to pre-industrial
conditions [Archer et al., 1998; Archer, 2005; Zachos et al.,
2005]. The paper by Loáiciga [2006] makes incorrect
assumptions about the role of alkalinity in seawater chemis-
try, and ignores modern research on the effects of changes in
seawater chemistry on marine biota, and thus draws errone-
ous conclusions that simply do not apply to the real ocean.
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