

An end to the "rain ratio" reign?

Andy J. Ridgwell

School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Now at Department of Earth Sciences, University of California, Riverside, Riverside, California 92521, USA. (andy@cirtus.ucr.edu)

[1] One of the most elegant mechanisms forwarded for late Quaternary atmospheric CO_2 variability concerns the sensitivity of calcium carbonate preservation in deep ocean sediments to the relative delivery rates of calcium carbonate and particulate organic carbon (the CaCO₃:POC "rain ratio"). It was implicitly assumed that any change in the CaCO₃:POC rain ratio of biogenic material produced in the surface ocean will be communicated directly to the sediments. This would allow relatively subtle shifts in ecosystem composition to affect sedimentary CaCO₃ preservation (and thus atmospheric CO₂). However, recent research into the controls on the transport of POC to depth suggests that the rain ratio "seen" by the sediments may instead be buffered against any perturbation occurring at the surface. This casts doubt on the viability of hypotheses envisaging ecological changes as a means of accounting for the observed glacial-interglacial CO_2 signal.

Components: 2906 words, 1 figure.

Keywords: Rain ratio; calcium carbonate; glacial; ballast.

Index Terms: 4806 Oceanography: Biological and Chemical: Carbon cycling; 1615 Global Change: Biogeochemical processes (4805); 4845 Oceanography: Biological and Chemical: Nutrients and nutrient cycling.

Received 16 January 2003; Revised 18 April 2003; Accepted 25 April 2003; Published 21 June 2003.

Ridgwell, A. J., An end to the "rain ratio" reign?, *Geochem. Geophys. Geosyst.*, 4(6), 1051, doi:10.1029/2003GC000512, 2003.

[2] Ice cores recovered from the Antarctic ice cap and analyzed for air bubble gas composition reveal that the atmospheric mixing ratio of CO_2 (xCO_2) at the height of the last glacial was only about 190 ppm, compared with 260–270 ppm at the start of the Holocene [*Delmas et al.*, 1980; *Neftel et al.*, 1982]. Although numerous different possible biogeochemical mechanisms for controlling CO_2 have been identified, an accepted explanation for an increase of this magnitude has proved surprisingly elusive [*Archer et al.*, 2000]. Arguably the most elegant candidate mechanism involves the influence that the ratio of biogenic calcium carbonate to particulate organic carbon (the CaCO₃ to POC

flux (or "rain") ratio) has on the preservation of CaCO₃ in deep sea sediments [*Archer*, 1991]. In order to maintain steady state (weathering inputs balanced by loss through CaCO₃ burial in sediments) in the ocean carbon cycle, the effect of any perturbation able to drive an initial decrease in CaCO₃ burial is ultimately compensated for by an increase in the carbonate ion concentration ($[CO_3^{2-}]$) of the deep sea (which, in turn, equates to a reduction in atmospheric *x*CO₂). A reduction in the production and export rate (relative to POC) of CaCO₃ is one possible means of initiating such a chain of events, and forms of the basis of the "rain ratio" hypothesis [*Archer and Maier-Reimer*,

RIDGWELL: AN END TO THE RAIN RATIO REIGN

1994]. The operation of this is shown schematically in Figure 1a.

Geochemistry Geophysics Geosystems

[3] Coupled ocean-sediment models have confirmed the plausibility of this mechanism, and indicate that a mean global reduction of 40% in the CaCO₃:POC rain ratio at the sediment surface is sufficient to drive atmospheric xCO_2 down by about 70-90 ppm [Archer and Maier-Reimer, 1994; Ridgwell et al., 2002]. This is equivalent to the entire amplitude of observed glacial-interglacial CO_2 change, making this mechanism potentially key to resolving the "glacial CO₂" question. How might a glacial decrease in rain ratio have arisen? While the remains of all phytoplankton species contribute toward the settling flux of POC leaving the base of the euphotic zone, it is primarily only coccolithophorids (together with their zooplankton equivalent – foraminifera) that contribute to CaCO₃ export. Thus a change in the CaCO₃:POC export ratio can, in theory, be brought about simply through a shift in ecosystem composition [Dymond and Lyle, 1985] - one involving a change in the relative contribution made by coccolithophorids to total ecosystem productivity. Probably the most powerful means of achieving this is via the "silicate switch" [Ridgwell et al., 2002], whereby increased silicic acid (H₄SiO₄) availability enables diatoms to further "out compete" smaller and more tightly grazing-controlled phytoplankton species (such as the coccolithophorids) for limiting nutrients common to all phytoplankton species (such as nitrate and iron). Just such a control has been expounded in a number of recent studies, in which lower atmospheric xCO_2 is (at least partly) explained as a consequence of greater H₄SiO₄ availability. The larger oceanic H₄SiO₄ inventory necessary to achieve this could arise due to either increased Si supply rates to the ocean derived from aeolian dust [Harrison, 2000] or continental rock weathering [Tréguer and Pondaven, 2000], or due to decreased rates of Si removal by opal burial on continental shelves [Ridgwell et al., 2002]. Other modeling work has highlighted the possibility that rather than a whole-ocean change in H₄SiO₄ inventory, a meridonal redistribution of nutrients might have occurred. In this hypothesis, enhanced dust deposition to the Southern Ocean during glacial times enables greater (iron-driven) utilization efficiency of H_4SiO_4 by diatoms [*Watson et al.*, 2000]. The result of this is an increase in the northward transport of "left over" (unutilized) H_4SiO_4 to the subtropics where it was previously in insufficient supply and limiting to diatom growth [*Brzezinski et al.*, 2002; *Ganeshram*, 2002; *Matsumoto et al.*, 2002].

[4] In each of these scenarios atmospheric xCO_2 will be affected directly as a result of changes in CaCO₃ export – lower CaCO₃ export fluxes producing a reduction in the alkalinity gradient between surface and deep, and thus a lower partial pressure of CO₂ in the surface ocean [Dymond and Lyle, 1985]. An analogous effect could also arise should POC originating from diatoms be transferred to the deep ocean more efficiently than POC originating from pico- and nano-plankton [Ganeshram, 2002], although in this case it is an increase in the dissolved inorganic carbon gradient that causes lower atmospheric xCO_2 . The dominant CO₂ control in each glacial scenario, through, was assumed to be mediated indirectly via the "rain ratio" mechanism [Archer and Maier-Reimer, 1994]. However, research just recently published by Klaas and Archer [2002] now casts doubt on the effectiveness of the "rain ratio" mechanism, and with it, the importance of this particular control on CO₂.

[5] Critical to a correct understanding of the "rain ratio" mechanism is the distinction between the CaCO₃:POC export ratio (i.e., that measured at the base of the euphotic zone or stratified ocean surface) and the ratio measured at the sediment surface – it is not the export rain ratio that is the critical variable in determining preservation of CaCO₃ in deep sea sediments, per se, but the sediment rain ratio. Any process that affects the efficiency (relative to CaCO₃) with which POC is transferred from the surface to the deep sea will therefore impact on the operation of the "rain ratio" mechanism. It seems that "ballast" minerals play such a role – by increasing mean particulate density, the presence of CaCO₃, opal, and dust (terrigenous silicate minerals) in aggregates with organic matter enhance the settling rate of particles

Figure 1. Conceptual operation of the "rain ratio" mechanism [Archer and Maier-Reimer, 1994]. (a) Sequence of events assuming no change in the efficiency of POC export to the deep sea. (I) Initial system steady state, with (riverine) influx of Ca^{2+} and CO_3^{2-} to the ocean balanced by the burial of CaCO₃ in deep sea sediments. (II) Perturbation of ecosystem composition resulting in a decrease in the surface ocean CaCO₃:POC export ratio. The reduction in the CaCO₃:POC rain ratio is communicated proportionally to the sediments, resulting in decreased carbonate preservation and a significantly lower global burial rate of CaCO₃ (manifested in a shoaling of the lysocline). Inputs of Ca^{2+} and CO_{3-}^{2-} to the ocean now exceed losses. (III) Deep sea $[CO_{3-}^{2-}]$ rises, driving an increase in the preservation of $CaCO_3$ in the sediments, until the point is reached where the global burial flux once again balances input. Higher oceanic $[CO_3^{2-}]$ equates to lower atmospheric xCO_2 (other things being equal). (b) Sequence of events assuming a reduction in the efficiency of POC export through a decrease in CaCO₃ ballasting. (I) Initial steady state. (II) Perturbation of ecosystem composition resulting in a decrease in the CaCO₃:POC export ratio from the surface ocean (as before). However, because there is less CaCO₃ available for ballasting organic matter, there is a reduction in the efficiency of POC export to the deep sea. The result of this is that the CaCO₃:POC rain ratio at the sediment surface and net burial flux changes much less than before (i.e., Figure 1a, above). (III) With only a relatively small increase in oceanic $[CO_3^2^-]$ required to restore steady state, atmospheric xCO₂ is ultimately little affected by the surface ocean ecosystem perturbation.

Geochemistry Geophysics Geosystems

[6] There are also implications of this "ballast buffer" in the interpretation of certain paleoceanographic proxies. The search for a reliable proxy for past changes in deep ocean [CO₃²⁻] has assumed something of "Holy Grail" status in paleoceanography research in recent years. Such a proxy would be invaluable in deciphering the mechanisms responsible for the observed glacial-interglacial changes in atmospheric xCO₂ (A. J. Ridgwell et al., Implications of coral reef buildup for the late Quaternary carbon cycle, manuscript submitted to Paleoceanography, 2003). Applied over timescales beyond the current ~ 400 ka limit of ice core records [Petit et al., 1999], it would also greatly help in reducing uncertainty in reconstructions of past surface ocean pCO_2 (and thus atmospheric

of the magnitude previously assumed.

xCO₂) [*Pearson and Palmer*, 2000], which can rely heavily on assumptions regarding past ocean chemistry. One of the leading contenders for such a $[CO_3^{2-}]$ proxy involves the analysis of foraminiferal shell weight [Broecker and Clark, 2001]. Although interpretation is complicated by a number of currently poorly understood factors [Bijma et al., 2002], correction for arguably the most important variable, that of the dependence of initial shell weight on surface environmental conditions, is now possible [Barker and Elderfield, 2002]. However, the findings of Klaas and Archer [2002] suggests that an additional correction will be required, and the effect of changes in ballasting (thinner, lighter shells, for instance, being able to "ballast" less organic matter to the sediments, with the result that dissolution loss of CaCO₃ by organic carbon metabolism will be less) be taken into account. While this does not necessarily present an insurmountable problem for this proxy, it does add a further dimension to the interpretation.

[7] Considerable advances have been made over the past decade in how complex biological processes in the ocean surface and diagenetic transformation in deep-sea sediments are represented and coupled together in carbon cycle models [e.g., Archer and Maier-Reimer, 1994; Heinze et al., 1999]. However, the representation of ocean interior biogeochemical processes has tended to lag behind, and the simple exponential and power law functions, previously standard in describing the transfer of biogenic material from the ocean surface to the sediments, are now no longer sufficient in many current model applications. For instance, even when ambient water column conditions of temperature and silicic acid are used to calculate a depth-specific opal dissolution rate, model predictions still perform poorly against sediment trap observations [Ridgwell et al., 2002]. In this example, it is likely that still further factors such as microbial degradation of protective organic coatings [Bidle and Azam, 1999] are important and need to be taken into account. For CaCO₃, the existence of microenvironments within individual "marine snow" aggregates may be critical in determining the overall degree of dissolution that takes place in the water column [Jansen et al.,

2002]. Clearly, improved understanding of how the global carbon cycle responds to perturbation and the nature of its relationship to both past and future climatic change requires further focused research effort in this area. There may be further "regime change" to come in our view of how the global carbon cycle operates.

Acknowledgments

[8] AJR would like to thank the School of Environmental Sciences at the University of East Anglia and the Trusthouse Charitable Foundation for financial support.

References

- Archer, D., Modeling the calcite lysocline, *J. Geophys. Res.*, *96*, 17,037–17,050, 1991.
- Archer, D., and E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, *Nature*, 367, 260–263, 1994.
- Archer, D., A. Winguth, D. Lea, and N. Mahowald, What caused the glacial/interglacial atmospheric pCO₂ cycles?, *Rev. Geophys.*, 38, 159–189, 2000.
- Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, A new, mechanistic model for organic carbon fluxes in the ocean: Based on the quantitative association of POC with ballast minerals, *Deep Sea Res. Part II*, 49, 219–236, 2002.
- Barker, S., and H. Elderfield, Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO₂, *Science*, 297, 833–836, 2002.
- Bidle, K. D., and F. Azam, Accelerated dissolution of diatom silica by marine bacterial assemblages, *Nature*, *397*, 508–512, 1999.
- Bijma, J., B. Hönisch, and R. E. Zeebe, Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on "Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea" by W. S. Broecker and E. Clark, *Geochem. Geophys. Geosyst.*, 3(11), 1064, doi:10.1029/2002GC000388, 2002.
- Broecker, W. S., and E. Clark, Glacial-to-Holocene redistribution of carbonate ion in the deep sea, *Science*, 294, 2152– 2155, 2001.
- Brzezinski, M. A., C. J. Pride, V. M. Franck, D. M. Sigman, J. L. Sarmiento, K. Matsumoto, N. Gruber, G. H. Rau, and K. H. Coale, A switch from Si (OH)₄ to NO₃⁻ depletion in

the glacial Southern Ocean, *Geophys. Res. Lett.*, 29(12), 1564, doi:10.1029/2001GL014349, 2002.

- Delmas, R. J., J. M. Ascencio, and M. Legrand, Polar ice evidence that atmospheric CO₂ 20,000 yr BP was 50% of present, *Nature*, 284, 155–157, 1980.
- Dymond, J., and M. Lyle, Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO₂ variations during the Pleistocene, *Limnol. Oceanogr.*, *30*, 699–712, 1985.
- Ganeshram, R. S., Oceanic action at a distance, *Nature*, 419, 123–125, 2002.
- Harrison, K. G., Role of increased marine silica input on paleopCO₂ levels, *Paleoceanography*, 15, 292–298, 2000.
- Heinze, C., E. Maier-Reimer, A. M. E. Winguth, and D. Archer, A global oceanic sediment model for long-term climate studies, *Global Biogeochem. Cycles*, 13, 221–250, 1999.
- Jansen, H., R. E. Zeebe, and D. A. Wolf-Gladrow, Modeling the dissolution of settling CaCO₃ in the ocean, *Global Biogeochem. Cycles*, 16(2), 1027, doi:10.1029/2000GB001279, 2002.
- Kennedy, M. J., D. R. Pevear, and R. J. Hill, Mineral surface control of organic carbon in black shale, *Science*, 295, 657– 660, 2002.
- Klaas, C., and D. E. Archer, Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, *Global Biogeochem. Cycles*, *16*(4), 1116, doi:10.1029/2001GB001765, 2002.
- Matsumoto, K., J. L. Sarmiento, and M. A. Brzezinski, Silicic acid leakage from the Southern Ocean: A possible explanation for glacial atmospheric pCO₂, *Global Biogeochem. Cycles*, 16(3), 1031, doi:10.1029/2001GB001442, 2002.
- Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn, Ice core measurements give atmospheric CO₂ content during the past 40,000 yr, *Nature*, 295, 220–223, 1982.
- Pearson, P. N., and M. R. Palmer, Atmospheric carbon dioxide concentrations over the past 60 million years, *Nature*, 406, 695–699, 2000.
- Petit, J. R., et al., Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica, *Nature*, *399*, 429–436, 1999.
- Ridgwell, A. J., A. J. Watson, and D. E. Archer, Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO₂, *Global Biogeochem. Cycles*, 16(4), 1071, doi:10.1029/2002GB001877, 2002.
- Tréguer, P., and P. Pondaven, Silica control of carbon dioxide, *Nature*, 406, 358–359, 2000.
- Watson, A. J., D. C. E. Bakker, A. J. Ridgwell, P. W. Boyd, and C. S. Law, Effect of iron supply on Southern Ocean CO₂ uptake and implications for glacial atmospheric CO₂, *Nature*, 407, 730–733, 2000.